检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
在ModelArts中1个节点的专属资源池,能否部署多个服务? 支持。 在部署服务时,选择专属资源池,在选择“计算节点规格”时选择“自定义规格”,设置小一些或者选择小规格的服务节点规格,当资源池节点可以容纳多个服务节点规格时,就可以部署多个服务。如果使用此方式进行部署推理,选择的规格务必满
csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --tokenizer:
csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --tokenizer:
csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --tokenizer:
ModelArts SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path,
GPU A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败 问题现象 在A系列GPU裸金属服务器上,系统环境是ubuntu20.04+nvidia515+cuda11.7,使用Pytorch2.0时出现如下错误: CUDA
Reasoning Outputs与structured_outputs和tool_calling不兼容。 不支持请求参数stop和stop_token_ids,当前版本会导致思考过程被提前截断。 启动Reasoning Outputs功能 在启动服务时添加如下命令。 --enable-reasoning
调优模型:使用不同的调优参数去训练模型。 部署模型服务:将调优后的模型部署成模型服务。 使用模型服务:在MaaS体验模型服务,测试推理结果。 结果分析:分析模型的调优结果和推理结果,对比新闻分类效果。 方案优势 高准确性:利用模型强大的语义理解能力,系统能够准确识别新闻内容的主题和关键词,实现高准确率的自动分类。
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内
上开发环境,包含标准化昇腾算力资源和完整的迁移工具链,帮助用户完成昇腾迁移的调测过程,进一步可在平台上将迁移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转换后可以在昇
步骤二 :部署模型服务 模型创建成功后,在“我的模型”页面,单击目标模型右侧操作列的“部署”。 在“部署模型服务”页面,完成创建配置。 表3 部署模型服务 参数 说明 取值样例 服务设置 服务名称 自定义模型服务的名称。 service-1122 描述 自定义部署模型服务的简介。 - 模型设置
Studio,跳转至模型服务体验页面。 在模型服务体验页面,将出现“ModelArts Studio 服务声明”对话框,请查看服务声明内容并单击“同意”。 在模型服务体验页面顶部,单击“选择模型服务”,按需领取免费服务额度或开通商用服务。 领取免费服务额度: 单击“免费服务”页签,在模型服务右侧单
使用root用户以SSH的方式登录服务器。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如SFS Turbo的路径:/mnt/sfs_turbo目录下,以下都以/mnt/sfs_turbo为例,请根据实际修改。 unzip
调试,数据和代码存储在OBS服务的并行文件系统下,调试完成过后可保存镜像。 使用主用户账号登录管理控制台,单击右上角用户名,在下拉框中选择“统一身份认证”,进入统一身份认证(IAM)服务。 添加开发环境使用权限和依赖服务SWR权限。在统一身份认证服务页面的左侧导航选择“权限管理 >
"system": "系统提示词(选填)", "tools": "工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。
"system": "系统提示词(选填)", "tools": "工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。
csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --tokenizer: