检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
-v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
获取到性能测试结果csv文件后,执行数据可视化脚本: cd ./llm_tools/PD_separate python draw_picture_4graph_p90.py \ --ttft-threshold 2000 \ --tpot-threshold 50 \ --requests-num
-v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
-v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
-v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
-v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
用户如何设置默认的kernel? 用户希望打开Notebook默认的kernel为自己自定义的kernel。 解决方式: 在Terminal里执行如下命令在镜像里指定环境变量。 # python-3.7.10这里指用户想设置的kernel名称 export KG_DEFAULT_
参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
], "max_tokens": args.max_tokens, "temperature": args.temperature, "ignore_eos": args.ignore_eos, "stream": args
], "max_tokens": args.max_tokens, "temperature": args.temperature, "ignore_eos": args.ignore_eos, "stream": args
nci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
针对openai的/v1/completions以及/v1/chat/completions两个非流式接口,请求体中可以添加可选参数"return_latency",默认为false,若指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: pre
多模态模型推理性能测试 多模态模型推理的性能测试目前仅支持静态性能测试。 静态性能测试是指评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚地看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
各模型支持的最小卡数和最大序列 基于vLLM(v0.8.5.rc1)部署推理服务时,不同模型推理支持的最小昇腾Snt9b卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所
针对openai的/v1/completions以及/v1/chat/completions两个非流式接口,请求体中可以添加可选参数"return_latency",默认为false,若指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: pre
主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练