检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"content": "介绍下长江,以及长江中典型的鱼类" } ], "temperature": 0.9, "max_tokens": 600 } 父主题: 大模型使用类问题
”,或者可以说明已有的信息是什么领域的信息,比如“以上是金融领域的新闻”、“以上是一篇xx领域的xxx文档”。 例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设: 增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银
配置Prompt builder 创建Agent的首要步骤就是撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。Agent会根据LLM对提示词的理解,来选择使用插件或知识库,响应用户问题。因此,一个好的提示词可以让LLM更好的理解并执行任务,Agent效果与提示词息息相关。
temperature 否 Float 用于控制生成文本的多样性和创造力。 取值接近0表示最低的随机性,1表示最高的随机性。一般来说,temperature越低,适合完成确定性的任务。temperature越高,如0.9,适合完成创造性的任务。 temperature参数可以影响
工作流 功能介绍 通过调用创建好的工作流API,输入问题,将得到工作流执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/workflows/{workflow_id}/conversations/{conversation_id}
f(x))来表示,损失函数越小,模型的鲁棒性就越好。 推理相关概念 表3 训练相关概念说明 概念名 说明 温度系数 温度系数(temperature)控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率。其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。
"content": "介绍下长江,以及长江中典型的鱼类" } ], "temperature": 0.9, "max_tokens": 600 } 单击Postman界面“Send”,发送请求。当接口返回状态为200时,表示NLP大模型API调用成功。
models”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。 <dependency> <groupId>com
Product type选择Reanalysis。 Variable新选择Geopotential、Specific humidity、Temperature、U-component of wind、V-component of wind。 Pressure level选择1000hPa、92
应用 功能介绍 通过调用创建好的应用API,输入问题,将得到应用执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/agents/{agent_id}/conversations/{conversation_id}
使用步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进入“文本对话”页签,选择服务与系统人设,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。 图1 使用预置服务进行文本对话 可以尝试修改参数并查看
total_size:数据文件的总大小,单位为字节。 surface_features:海表特征变量列表,例如海表高度(SSH)、温度(T)、风速(U、V)。 under_sea_layers:深海层列表,例如500m、400mPa等。 under_sea_features:高空特征变量列表,例如海盐(S)、温度(T)、海流速率(U、V)。
预报未来小时数,默认168。 draw_figures 否 String 是否输出结果图片,取值true/false,默认true。 forecast_features 否 String 确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 可选择的要素参考表8中,提供的高空变量和表面变量。
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
20。 draw_figures 否 String 是否输出结果图片,取值true/false,默认true。 forecast_features 否 String 确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 可选择的要素参考表8中,提供的全球海洋要素模型的深海变量和海表变量。
问答模块:准备单轮问答和检索增强的数据集。 {"context": ["请问福田英才荟卫生系统人才与福田英才荟高层次人才是不同的部门受理么?"], "target": "您好,福田英才荟卫生系统人才奖励管理办法只针对福田区属医疗卫生事业单位人员,其他高层次人才申领奖励建议咨询区人力资源局。"}
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
rue。 forecast_features String 确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 num_ensembles Long 集合成员数量。 ensemble_forecast_features String 集合预报的输出
预报未来小时数,默认168。 draw_figures String 是否输出结果图片,取值true/false,默认true。 forecast_features String 确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 请求示例 无 响应示例 { "id":
或 2024-05-27 12:00:00 或 2024/05/27 12:00:00 。 示例如下: timestamp,feature1,feature2,target 2024-05-27 12:00:00,10.5,20.3,100 2024-05-27 12:01:00,10