检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
执行预训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
执行预训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新dataset_info.json文件;请务必在dataset_info
版本说明和要求 软件包结构说明 本方案需要使用到的软件配套版本和依赖包获取地址如下表所示。 表1 软件包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.5.902-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 本方案使用AscendCloud-6
版本说明和要求 软件包结构说明 本方案需要使用到的软件配套版本和依赖包获取地址如下表所示。 表1 软件包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.5.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 本方案使用AscendCloud-6
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,不需要启动推理服务。
训练性能测试 流程图 训练性能测试流程图如下图所示。 图1 训练性能测试流程 执行性能比较脚本 完成benchmark训练任务。 进入test-benchmark目录执行命令。 ascendfactory-cli performance <cfgs_yaml_file> --baseline
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
删除Overlay WAN侧BGP路由过滤策略 典型场景 BGP路由北向API。 接口功能 批量删除BGP路由。 接口约束 该接口支持租户视图或msp代维视图下,角色为“Open Api Operator”的用户访问,必须在用户会话建立后使用。 该API可能会直接或间接影响现网业
基于ServiceStage将应用部署到ECS实例 基于华为云ServiceStage,将应用部署到华为云ECS实例。 该模板涉及的部署步骤如下所示: 详细步骤操作请参考ServiceStage组件部署2.0。 父主题: 使用ServiceStage应用部署模板创建并部署应用
基于ServiceStage将应用部署到CCE集群 基于华为云ServiceStage,将应用部署到华为云CCE集群。 该模板涉及的部署步骤如下所示: 详细步骤操作请参考ServiceStage组件部署2.0。 父主题: 使用ServiceStage应用部署模板创建并部署应用