检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
部署服务时报错pod has unbound immediate PersistentVolumeClaims 问题现象 服务配置存储挂载,在部署服务时事件中有该异常: 图1 存储挂载报错 问题原因 如果服务配置了存储挂载,在创建对应的存储卷时,存储卷声明(PersistentV
huawei-npu 2.1.53 Lite模式Server节点操作系统 HCE2.0(推荐)/Ubuntu22.04 Lite模式Cluster节点操作系统 HCE2.0(推荐)/EulerOS 2.10 Standard模式集群节点操作系统 HCE2.0(推荐)/EulerOS 2.10 NPU固件&驱动
如何将Keras的.h5格式的模型导入到ModelArts中? ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。
主流开源大模型基于Lite Cluster适配MindSpeed-LLM PyTorch NPU训练指导(6.5.902) 方案概述 支持的模型列表 版本说明和要求 准备工作 执行训练任务 训练结果输出 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练
在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1
主流开源大模型基于Lite Cluster适配MindSpeed-LLM PyTorch NPU训练指导(6.5.901) 场景介绍 准备工作 训练任务 查看日志和性能 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
登录弹性文件服务SFS控制台,在SFS Turbo列表找到训练作业挂载的SFS Turbo,单击名称进入详情页。获取VPC信息、安全组信息和endpoint信息。 VPC信息:SFS Turbo详情页的“虚拟私有云”。 安全组信息:SFS Turbo详情页的“安全组”。 endpoint信息:SFS Turbo详
Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径 /home/ma-user/work/ 存储位置:输入用户的“子目录挂载”路径。如果默认没有填写,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。
方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。
方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。
主流开源大模型基于Lite Cluster适配MindSpeed-LLM PyTorch NPU训练指导(6.5.905) 方案概述 支持的模型列表 版本说明和要求 准备工作 执行训练任务 训练结果输出 训练脚本说明参考 常见错误原因和解决方法 父主题: LLM大语言模型训练
可以直接把SFS的目录直接挂载到调试节点的"/mnt/sfs_turbo"目录,或者保证对应目录的内容和SFS盘匹配。 调试时建议使用接近的方式,即:启动容器实例时使用"-v"参数来指定挂载某个宿主机目录到容器环境。 docker run -ti -d -v /mnt/sfs_turbo:/sfs my_deeplearning_image:v1
报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决? 问题现象 报错“no such identity: C:/Users/xx /test.pem: No such file or
使用MobaXterm工具SSH连接Notebook后,经常断开或卡顿,如何解决? 问题现象 MobaXterm成功连接到开发环境后,过一段时间会自动断开。 可能原因 配置MobaXterm工具时,没有勾选“SSH keepalive”或专业版MobaXterm工具的“Stop server
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)