释放Lite Cluster资源 针对不再使用的Lite Cluster资源,可以释放资源,停止计费相关介绍请见停止计费。 Lite Cluster资源池资源释放后不可恢复,请谨慎操作。 退订包年/包月的Lite Cluster资源 登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池
由于商用模型支持同时购买多种配额模式的资产,所以仅部署商用模型时需要进行配额选择。免费模型仅一种配额模式无需选择。 图2 修改配额 如果您选择部署的非商业模型,系统自动跳转至“部署”页面。 在部署页面中,无需再选择模型及其版本,参考部署模型的操作指导完成其他参数填写,即可部署为您需要的服务。 父主题:
SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
Lite Cluster资源配置流程 本章节介绍Lite Cluster环境配置详细流程,适用于加速卡环境配置。 前提条件 已完成集群资源购买和开通,具体请参见Lite Cluster资源开通。 集群的配置使用需要用户具备一定的知识背景,包括但不限于Kubernetes基础知识、网络知识、存储和镜像知识。
Lite Cluster资源管理介绍 在ModelArts控制台,您可以对已创建的资源进行管理。通过单击资源池名称,可以进入到资源池详情页,您可以在详情页进行下述操作。 管理Lite Cluster资源池:ModelArts支持对资源池进行管理,包括续费、开通/修改自动续费、扩容、升级驱动等操作。
该进程一直处于"D+"状态,可能表明出现了I/O操作阻塞或其他问题,这可能导致系统死锁或其他问题。 如果想构造nvidia-smi D+进程,可以死循环一直执行nvidia-smi体验D+进程带来的系统不稳定性, 如: #!/bin/bash while true; do nvidia-smi
构建模型 自定义模型规范 自定义镜像规范 使用AI Gallery SDK构建自定义模型 父主题: 发布和管理AI Gallery模型
监控Lite Cluster资源 使用AOM查看Lite Cluster监控指标 使用Prometheus查看Lite Cluster监控指标 父主题: Lite Cluster资源管理
com/jupyterlab/extension-examples.git测试网络连通情况。 图6 Clone仓库失败 如果克隆时遇到Notebook当前目录下已有该仓库,系统给出提示仓库名称重复,此时可以单击“覆盖”继续克隆仓库,也可以单击取消。 父主题: 上传文件至JupyterLab
ci7。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
nci5。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
nci5。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
dequantized_weight = dequantized_weight.to(torch.get_default_dtype()) return dequantized_weight def main(fp8_path, bf16_path): torch.set_default_dtype(torch
nci5。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/
SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
InternVL2&2.5系列模型基于Lite Server适配PyTorch NPU训练指导(6.5.901) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展InternVL2-8B, InternVL2-26B
-v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
报错“The VS Code Server failed to start”如何解决? 问题现象 解决方法 检查VS Code版本是否为1.78.2或更高版本,如果是,请查看Remote-SSH版本,如果低于v0.76.1,请升级Remote-SSH。 打开命令面板(Windows:
A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败 问题现象 在A系列GPU裸金属服务器上,系统环境是ubuntu20.04+nvidia515+cuda11.7,使用Pytorch2.0时出现如下错误: CUDA initialization:
您即将访问非华为云网站,请注意账号财产安全