检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14 【llava1.5】
x版本,推荐使用3.7.x版本。 如果本地安装SDK时,出现如下图中的报错,需要先安装3.1.1版本的futures依赖包,然后再重新安装SDK。 pip install futures==3.1.1 图1 安装ModelArts SDK报错信息 当pip版本>=24.1版本时,会对
仅需要修改预训练中的多机训练执行命令即可 - name: main args: - cd /mnt/sfs_turbo/llm_train/AscendSpeed; sh scripts/llama2/0_pl_lora_70b
"@modelarts:shape": "bndbox", "@modelarts:feature": [[347, 186], [382, 249]]}, {"@modelarts:color":
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 feature 否 String 实例类别,默认为NOTEBOOK。枚举值如下: DEFAULT:CodeLab免费规格实例,每个用户最多只能创建一个。
project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 feature 否 String 实例类别,默认为NOTEBOOK。枚举值如下: DEFAULT:CodeLab免费规格实例,每个用户最多只能创建一个。
写,SFS Turbo方式“超参”框写入】 backend_config.training.data-path /home/ma-user/ws/xxx 已处理好数据路径目录,如有处理完成数据可设置此参数【Standard场景OBS方式“输入”框填写,SFS Turbo方式“超参”框写入】
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
"conversation_id": 1, "meta_instruction": "", "num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n"
计费的最小单位为秒,话单上报后的每一小时对用户账号进行一次扣费。如果使用过程中暂停、终止了消耗资源的AI Gallery工具链服务,即服务不处于计费的状态中,则系统不会立即扣费,依然等到满1小时后再进行扣费,且基于当前1小时内的实际使用时长进行扣费。 实际计费规则 资源按时价扣费,真正计费的价格以实际账单为准。查看账单请参见账单介绍。
如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14 【llava1.5】
if data.get('architectures')[0] == "InternVLChatModel": return [0, 92543, 92542] return None def post_img(args):
if data.get('architectures')[0] == "InternVLChatModel": return [0, 92543, 92542] return None def post_img(args):
可以直接把SFS的目录直接挂载到调试节点的"/mnt/sfs_turbo"目录,或者保证对应目录的内容和SFS盘匹配。 调试时建议使用接近的方式,即:启动容器实例时使用"-v"参数来指定挂载某个宿主机目录到容器环境。 docker run -ti -d -v /mnt/sfs_turbo:/sfs my_deeplearning_image:v1
准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
command: ["/bin/sh", "-c"] args: - cd /mnt/sfs_turbo/llm_train/AscendSpeed; sh scripts/llama2/0_pl_pretrain_70b