DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user
准备镜像环境 Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服
torchair_cache文件夹,避免由于缓存文件与实际推理不匹配而报错。 什么是CANN-GRAPH CANNGraph图模式是一种Capture-Replay架构的Host图,可以有效消除Host瓶颈,支持模型输入动态shape,无需分档构图,构图较快。未设置INFER_MODE
i7。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
发布免费算法 在AI Gallery中,您可以将个人开发的算法免费分享给他人使用。 前提条件 在ModelArts的算法管理中已准备好待发布的算法。创建算法的相关操作请参见创建算法。 创建算法时,算法代码存储的OBS桶内不能存在文件和文件夹重名的情况,这样算法可能会发布失败。如果算法发布成功,则代码开放会失败。
发布Notebook 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台。
合作伙伴 注册伙伴 发布解决方案 父主题: AI Gallery(旧版)
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务 在Lite Cluster资源池上使用Ascend
LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展LLaMA-VID的推理过程。 约束限制 本方案目前仅适用于企业客户。
DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导 方案概述 准备权重 部署推理服务 附录:rank_table_file.json文件 附录:config.json文件 附录:部署常见问题 父主题: DeepSeek系列模型推理应用
ci7。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
日志提示"Permission denied" 问题现象 训练作业访问挂载的EFS,或者是执行.sh启动脚本时,出现如下错误: OSError: [Errno 13]Permission denied: '/xxx/xxxx' bash: /bin/ln: Permission denied
下载JupyterLab文件到本地 在JupyterLab中开发的文件,可以下载至本地。关于如何上传文件至JupyterLab,请参见上传文件至JupyterLab。 不大于100MB的文件,可以直接从JupyterLab中下载到本地,具体操作请参见从JupyterLab中下载不大于100MB的文件至本地。
AI Gallery功能介绍 面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
您即将访问非华为云网站,请注意账号财产安全