SDXL基于Lite Server适配PyTorch NPU的LoRA训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL LoRA训练是指在已经训练好的SDXL模型基础上,使用
LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展LLaMA-VID的推理过程。 约束限制 本方案目前仅适用于企业客户。
DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导 方案概述 准备权重 部署推理服务 附录:rank_table_file.json文件 附录:config.json文件 附录:部署常见问题 父主题: DeepSeek系列模型推理应用
参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。
ummary文件先上传到OBS并行文件系统,并确保OBS并行文件系统与ModelArts在同一区域。在Notebook中启动MindInsight时,Notebook会自动从挂载的OBS并行文件系统目录中读取Summary数据。 Step3 启动MindInsight 在开发环境
下载JupyterLab文件到本地 在JupyterLab中开发的文件,可以下载至本地。关于如何上传文件至JupyterLab,请参见上传文件至JupyterLab。 不大于100MB的文件,可以直接从JupyterLab中下载到本地,具体操作请参见从JupyterLab中下载不大于100MB的文件至本地。
AI Gallery功能介绍 面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零
日志提示"Permission denied" 问题现象 训练作业访问挂载的EFS,或者是执行.sh启动脚本时,出现如下错误: OSError: [Errno 13]Permission denied: '/xxx/xxxx' bash: /bin/ln: Permission denied
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.3
您即将访问非华为云网站,请注意账号财产安全