检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ok { fmt.Printf("Failed to get watcher chan: %v\n", err) return } node := event.Object
系统运行架构选择“ARM”。 图2 设置AI应用 单击“立即创建”开始AI应用创建,待应用状态显示“正常”即完成AI应用创建。 若权重文件大于60G,创建AI应用会报错,提示模型大于60G,请提工单扩容。
storage_type 否 String 挂载类型sfs_turbo极速文件系统挂载。 source_address 否 String 挂载源路径,挂载为极速文件时为sfs turbo id。
图4 上传成功 上传本地大文件(100MB~50GB)至JupyterLab 对于大小超过100MB不超过50GB的文件可以使用OBS中转,系统先将文件上传至OBS(对象桶或并行文件系统),然后从OBS下载到Notebook。
剪枝 FASP (Fast and Accurate Structured Pruning) 剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
剪枝 FASP (Fast and Accurate Structured Pruning) 剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
c - /mnt/deepseek/scripts/health.sh initialDelaySeconds: 2400 # 容器启动后,开始探测vllm服务的时长,需要根据sfs_turbo
FASP (Fast and Accurate Structured Pruning) 一种针对LLM进行结构化剪枝的算法,可以减少大模型对于内存和计算资源的需求,提升推理速度,同时其具备比较高的剪枝速度。
FASP (Fast and Accurate Structured Pruning) 一种针对LLM进行结构化剪枝的算法,可以减少大模型对于内存和计算资源的需求,提升推理速度,同时其具备比较高的剪枝速度。
图3 设置推理参数 表4 参数设置 参数 说明 取值样例 温度/Temperature 设置推理温度。 数值较高,输出结果更加随机。 数值较低,输出结果更加集中和确定。 0.7 核采样/top_p 设置推理核采样。调整输出文本的多样性,数值越大,生成文本的多样性就越高。
服务器在进行过“切换或者重置操作系统”操作后,EVS系统盘ID发生变化,和下单时订单中的EVS ID已经不一致, 因此EVS系统盘将不支持扩容,并显示信息:“当前订单已到期,无法进行扩容操作,请续订”。
Senna是一种结合了大型视觉语言系统(Senna-VLM)和端到端模型(Senna-E2E)的自动驾驶系统。端到端模型虽然有着强大的规划能力,但是在面对复杂场景的规划表现不佳,大型视觉-语言模型(LVLM)在场景理解和推理方面表现出色,但是不适合精确的数值预测。
宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。
高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。
可参考权限管理文档修改SFS Turbo权限。 图9 输入数据设置完成界面 设置训练输出路径:新建“output”文件夹设置为输出。(如果本地有output文件夹,无需新建) 只有文件夹下才支持新建文件夹,除项目根目录以外,其他文件夹需展开才能添加文件夹。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。
当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图3 开启故障重启 断点续训练是通过checkpoint机制实现。