检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。
本案例中的训练作业需要通过SFS Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo中。 用户需要创建开发环境Notebook,并绑定SFS Turbo,以便能够通过Notebook访问SFS Turbo服务。
方案优势 高准确性:利用模型强大的语义理解能力,系统能够准确识别新闻内容的主题和关键词,实现高准确率的自动分类。 快速响应:系统能够实时处理新闻内容,快速完成分类,满足新闻时效性的要求。 可扩展性:随着模型的不断训练和优化,系统能够适应不断变化的新闻内容和分类需求。
随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。
以Linux aarch64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。
在创建训练作业时,设置SFS Turbo的“云上挂载路径”为“/home/ma-user/work”,使得训练环境下SFS也在“/home/ma-user/work”路径下。
DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 约束限制 仅适用于GPU资源监控。
signature.append(signature_def) if len(signature) == 1: model_signature = signature[0] else: logging.warning
}, { "from": "gpt", "value": "模型回答" } ], "system": "系统提示词
}, { "from": "gpt", "value": "模型回答" } ], "system": "系统提示词
}, { "from": "gpt", "value": "模型回答" } ], "system": "系统提示词
}, { "from": "gpt", "value": "模型回答" } ], "system": "系统提示词
系统将前面设置的多个用户加入用户组中。 用户登录并验证权限。
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。
表12 nfs属性列表 参数 是否必选 参数类型 说明 id 是 String SFS Turbo 文件系统 ID。 src_path 是 String SFS Turbo 文件系统地址。 dest_path 是 String 训练作业的本地路径。
signature.append(signature_def) if len(signature) == 1: model_signature = signature[0] else: logging.warning
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。
上传数据集至SFS Turbo 准备数据集,例如根据Alpaca数据部分给出的预训练数据集、SFT全参微调训练、LoRA微调训练数据集下载链接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。
正常 [model 0.0.1] OBS桶,OBS并行文件系统,SFS Turbo挂载成功。 [%s] %s volume successfully. - 服务部署和运行过程中,关键事件支持手动/自动刷新。
正常 [model 0.0.1] OBS桶,OBS并行文件系统,SFS Turbo挂载成功。 [%s] %s volume successfully. - 服务部署和运行过程中,关键事件支持手动/自动刷新。