检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
系统容器异常退出 问题现象 在训练创建后出现“系统容器异常退出”的故障。 [ModelArts Service Log]2022-10-11 19:18:23,267 - file_io.py[1ine:748] - ERROR: stat:404 errorCode:NoSuchKey
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
会下载历史版本占用磁盘空间。 随后可通过以下两种方式,将下载到本地的模型文件上传至SFS Turbo中。 本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。
本案例中的训练作业需要通过SFS Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo中。 用户需要创建开发环境Notebook,并绑定SFS Turbo,以便能够通过Notebook访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS
device_id, fmk_process.pid, fmk_process.returncode)) return fmk_process.returncode zero_ret_cnt +=
云上挂载路径 Notebook中挂载SFS后,SFS默认在“/home/ma-user/work”路径下。在创建训练作业时,设置SFS Turbo的“云上挂载路径”为“/home/ma-user/work”,使得训练环境下SFS也在“/home/ma-user/work”路径下。
27,仅支持选择Containerd作为容器引擎。其余CCE集群版本,支持选择Containerd或Docker作为容器引擎。 修改操作系统。在“操作系统”下拉列表中指定操作系统版本。 修改驱动版本。在“驱动版本”下拉列表中指定驱动版本。 指定节点计费模式。用户增加节点数量时,可以打开“节点计费模
一个Token鉴权时,可以缓存起来,避免频繁调用。 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token可通过调用获取用户Token接
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
点续训 企业在具体使用大模型接入企业应用系统的时候,不仅要考虑模型体验情况,还需要考虑模型具体的精度效果,和实际应用成本。 MaaS提供灵活的模型开发能力,同时基于昇腾云的算力底座能力,提供了若干保障客户商业应用的关键能力。 保障客户系统应用大模型的成本效率,按需收费,按需扩缩的
Server上配置DCGM监控,用于监控Lite Server上的GPU资源。 DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 约束限制 仅适用于GPU资源监控。 前提条件
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
labels = [], [] for turn in sample["chat"].values(): if not turn: continue user = turn["Human"].replace("<eoh>"
signature_defs: signature.append(signature_def) if len(signature) == 1: model_signature = signature[0]
IAM子用户:由主账号在IAM中创建的用户,是服务的使用人员,具有独立的身份凭证(密码和访问密钥),根据账号授予的权限使用资源。IAM子用户相关介绍请参见IAM用户介绍。 联邦用户:又称企业虚拟用户。联邦用户相关介绍请参见联邦身份认证。 委托用户:IAM中创建的一个委托。IAM创建委托相关介绍请参见创建委托。
批量服务中调用模型的接口URL,表示服务的请求路径,此值来自模型配置文件中apis的url字段。 “映射关系” 如果模型输入是json格式时,系统将根据此模型对应的配置文件自动生成映射关系。如果模型的输入是文件,则不需要映射关系。 自动生成的映射关系文件,填写每个参数对应到csv单行